AdaBoostClassifier
public class AdaBoostClassifierUndocumented
- 
                  
                  decision stumps for the booster DeclarationSwift public var stumps: [DecisionTree]
- 
                  
                  weights computed during boosting DeclarationSwift public var weights: [Float]
- 
                  
                  alphas stored during boosting DeclarationSwift public var alphas: [Float]
- 
                  
                  errors used during boosting DeclarationSwift public var errors: [Float]
- 
                  
                  number of stumps to be created DeclarationSwift public var iterations: Int
- 
                  
                  training data DeclarationSwift public var data: [[String]]
- 
                  
                  K value for boosting DeclarationSwift public var K: Float
- 
                  
                  column number of target var DeclarationSwift public var target: Int
- 
                  
                  choice of regression vs. classification DeclarationSwift public var using: String
- 
                  
                  initializer for AdaBoost Classifier DeclarationSwift public init(data: [[String]], target: Int, till: Int, using: String)Parametersdatadata with labels targetcolumn number of the labels tillnumber of stumps to be generated usinginfo gain or gini Impurity 
- 
                  
                  Creates the stumps and fills weights DeclarationSwift public func boost()Return ValueNone 
- 
                  
                  Computes Error for a given stump DeclarationSwift public func computeError(stump: DecisionTree)ParametersstumpDecision Tree for which error needs to be computed Return ValueNothing 
- 
                  
                  Returns new dataset with wieghted sampling based on previous errors DeclarationSwift public func getWeightSampledData(from: [[String]]) -> [[String]]Parametersfromdata to sample from Return Valuesampled data 
- 
                  
                  Classfies an example by getting all stump classification and weighing them DeclarationSwift public func classify(this: [[String]]) -> StringReturn Valueclassification as a stringß 
- 
                  
                  Scores the booster’s accuracy on test data DeclarationSwift public func score(testData: [[String]]) -> (Float, [String])ParameterstestDatatest data as a 2D string array with feature header Return Value- accuracy of classifications as float
- classifications as string array
 
 AdaBoostClassifier Class Reference
      AdaBoostClassifier Class Reference