KMeans
public class KMeansK-Means Clustering
- 
                  
                  Method for initialization. DeclarationSwift var initializer: String
- 
                  
                  Seed for initializing the pseudo-random number generator. DeclarationSwift var seed: Int64
- 
                  
                  Maximum number of iterations of the k-means algorithm to run. DeclarationSwift var maximumIterationCount: Int
- 
                  
                  The number of clusters to form as well as the number of centroids to generate. DeclarationSwift var clusterCount: Int
- 
                  
                  Cluster centers which data is assigned to. DeclarationSwift public var centroids: Tensor<Float>
- 
                  
                  Inertia is the sum of square distances of samples to their closest cluster center. DeclarationSwift public var inertia: Tensor<Float>
- 
                  
                  Predicted cluster for training data. DeclarationSwift public var labels: Tensor<Int32>
- 
                  
                  Creates a Kmeans cluster. DeclarationSwift public init( clusterCount: Int = 2, maximumIterationCount: Int = 300, initializer: String = "kmeans++", seed: Int64 = 0 )ParametersclusterCountThe number of clusters to form as well as the number of centroids to generate, default to 2.maximumIterationCountMaximum number of iterations of the k-means algorithm to run, default to 300.initializerSelect the initialization method for centroids. kmeans++,randommethods for initialization, default tokmeans++.seedUsed to initialize a pseudo-random number generator, default to 0.
- 
                  
                  Returns the index of centroid having minimum euclidean distance with data. DeclarationSwift internal func nearest(centroids: Tensor<Float>, data: Tensor<Float>) -> Tensor<Int32>ParameterscentroidsCentroids with shape [1, feature count].dataData tensor of shape [sample count, feature count].Return ValueIndex of minimum euclidean distance centroid. 
- 
                  
                  Heuristic Initialization of centroids. DeclarationSwift internal func kmeansPlusPlus(_ data: Tensor<Float>)ParametersdataData with shape [sample count, feature count].
- 
                  
                  Random Initialization of centroids. DeclarationSwift internal func randomInitializer(_ data: Tensor<Float>)ParametersdataData with shape [sample count, feature count].
- 
                  
                  Fit a k-means cluster. DeclarationSwift public func fit(data: Tensor<Float>)ParametersdataInput data with shape [sample count, feature count].
- 
                  
                  Returns the prediced cluster labels. DeclarationSwift public func prediction(for data: Tensor<Float>) -> Tensor<Int32>ParametersdataInput data with shape [sample count, feature count].Return ValuePrediction for input data. 
- 
                  
                  Returns fit and prediced cluster labels. DeclarationSwift public func fitAndPrediction(for data: Tensor<Float>) -> Tensor<Int32>ParametersdataInput data with shape [sample count, feature count].Return ValuePredicted prediction for input data. 
- 
                  
                  Returns Transform input to a cluster-distance space. DeclarationSwift public func transformation(for data: Tensor<Float>) -> Tensor<Float>ParametersdataInput data with shape [sample count, feature count].Return ValueTransformed input to a cluster-distance space. 
- 
                  
                  Returns fit and Transform input to a cluster-distance space. DeclarationSwift public func fitAndTransformation(for data: Tensor<Float>) -> Tensor<Float>ParametersdataInput data with shape [sample count, feature count].Return ValueTransformed data to a cluster-distance space. 
- 
                  
                  Returns the sum of square distances of samples to their closest cluster center. DeclarationSwift public func score() -> Tensor<Float>Return ValueSum of square distances of samples to their closest cluster center. 
 KMeans Class Reference
      KMeans Class Reference