MultinomialNB
public class MultinomialNBMultinomial naive bayes classifier.
Multinomial naive bayes classifier used to classify discrete features.
Reference: “Multinomial Naive bayes”
- 
                  
                  Additive smoothing parameter. DeclarationSwift public var alpha: Float
- 
                  
                  The prior log probability for each class. DeclarationSwift public var classLogPrior: Tensor<Float>
- 
                  
                  Log probability of each word. DeclarationSwift public var featureLogProb: Tensor<Float>
- 
                  
                  Unique classes in target value set. DeclarationSwift public var classes: Tensor<Int32>
- 
                  
                  Tensor contains the index of class in classes. DeclarationSwift public var indices: Tensor<Int32>
- 
                  
                  Create a multinomial naive bayes model. DeclarationSwift public init( alpha:Float = 1.0 )ParametersalphaAdditive smoothing parameter, default to 1.0.
- 
                  
                  Fit a multinomial naive bayes classifier model. DeclarationSwift public func fit(data: Tensor<Float>, labels: Tensor<Int32>)ParametersdataTraining data with shape [sample count, feature count].labelsTarget values with shape [sample count].
- 
                  
                  Returns log-probability estimates for the test data. DeclarationSwift public func predictLogProba(data: Tensor<Float>) -> Tensor<Float>ParametersdataTest data with shape [sample count, feature count].Return Valuelog-probability estimates for the test data. 
- 
                  
                  Returns classified input data. DeclarationSwift public func prediction(for data: Tensor<Float>) -> Tensor<Int32>ParametersdataInput data with shape [sample count, feature count].Return ValueClassification of input data. 
- 
                  
                  Returns mean accuracy on the given test data and labels. DeclarationSwift public func score(data: Tensor<Float>, labels: Tensor<Int32>) -> FloatParametersdataSample data with shape [sample count, feature count].labelsTarget values with shape [sample count].Return ValueReturns the mean accuracy on the given test data and labels. 
 MultinomialNB Class Reference
      MultinomialNB Class Reference