GradientBoostRegressor
public class GradientBoostRegressor
Undocumented
-
training data
Declaration
Swift
public var data: [[String]] -
column number of target var
Declaration
Swift
public var target: Int -
residuals
Declaration
Swift
public var residualData: [[String]] -
root for the regressor
Declaration
Swift
public var root: Float -
decision trees
Declaration
Swift
public var trees: [DecisionTree] -
iterations/num of trees to be created
Declaration
Swift
public var limit: Int -
learning rate for GBR
Declaration
Swift
public var learningRate: Float -
choice of regression vs. classification
Declaration
Swift
public var using: String -
initializer for AdaBoost Classifier
Declaration
Swift
public init(data: [[String]], target: Int, till: Int, learningRate: Float = 0.1, using: String)Parameters
datadata with labels
targetcolumn number of the labels
Tillnumber of stumps to be generated
usingmax infoGain or min gini impurity for tree making
-
Creates the trees
Declaration
Swift
public func boost()Return Value
None
-
Updates residual data
Declaration
Swift
public func updateResidualData()Return Value
None
-
Predicts value for an example by getting all tree decisions
Declaration
Swift
public func predict(this: [[String]]) -> StringReturn Value
prediction as a string
-
Scores the booster’s accuracy on test data
Declaration
Swift
public func score(testData: [[String]]) -> (Float, [String])Parameters
testDatatest data as a 2D string array with feature header
Return Value
- accuracy of predictions as float
- predictions as string array
GradientBoostRegressor Class Reference